
Sequence Modeling

S.Calderara, R. Di Carlo

UNIMORE

December 3, 2020

S.Calderara, R. Di Carlo (UNIMORE) Sequence Modeling December 3, 2020 / 44



Agenda

1 Introduction

2 CNN

3 Transformers

4 Temporal Fusion Transformer

5 N-Beats

6 Unsupervised Anomaly Detection on Time Series

7 Credits

S.Calderara, R. Di Carlo (UNIMORE) Sequence Modeling December 3, 2020 1 / 44



Introduction

A sequence model is a model that takes in input a sequence of items (words, letters, time
series, audio signals, etc) and outputs one item or another sequence of items.

< x1 > < x2 > < x3 >
Je suis étudiant

−→ < y1 > < y2 > < y3 > < y4 >
I am a student

Some of the tasks using seq-to-seq models are: Machine translation, Time-series forecasting,
Video Captioning, Audio generation, Text Summarization and more.

Even if sequence modeling is very often associated with recurrent neural networks, yet recent
results indicate that other neural network architectures can outperform RNN on many tasks.
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CNN

The standard Convolution Neural Network was first introduced in Lenet-5 architecture.
Conv2D is generally used on Image data. It is called 2 dimensional CNN because the kernel
slides along 2 dimensions on the data.

In Conv1D the kernel slide only in one
dimension. Which kind of data requires kernel
sliding in only one dimension and have spatial
properties?

S.Calderara, R. Di Carlo (UNIMORE) Sequence Modeling December 3, 2020 3 / 44



1D Convolution

We can apply it to time series, as well as to
text, since we can represent each word as a
vector of fixed length.

The discrete 1D convolution is defined as:

(x ∗ ω)(n) =
k−1∑
i=0

x(n − i)ω(i)

Where x is our input vector of length n, and ω
our kernel of length k .
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1D Convolution - example

Asimov 0.2 0.1 -0.3 0.4

scrisse 0.5 0.2 -0.3 -0.1

molti -0.1 -0.3 -0.2 0.4

racconti 0.3 -0.3 0.1 0.1

sui 0.2 -0.3 0.4 0.2

robot 0.1 0.2 -0.1 -0.1

positronici -0.4 -0.4 0.2 0.3

Apply a filter(or kernel) of size 3

3 1 2 -3

-1 2 1 -3

1 1 -1 1

Asimov scrisse molti -1

scrisse molti racconti -0.5

molti racconti sui -3.6

racconti sui robot -0.2

sui robot positronici 0.3
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Dilated convolution

A major disadvantage of using CNN for sequences is that in order to achieve a long effective
history size, we need an extremely deep network or very large filter.

To mitigate this problem we can increase the
receptive field using dilated convolution.

(x ∗ ω)(n) =
k−1∑
i=0

x(n − d · i)ω(i)

Where d is the dilation factor
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Temporal Convolutional Network

1D-Conv layers are used in many models as a valid alternative to RNN in different tasks.

(b) The TCN [1] is a model composed of residual blocks of dilated causal convolutions
(a) Each layer use a different dilation factor d= 1,2,4 and filter size k= 3
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Transformer

Sequence-to-sequence modelling using RNNs? No thanks, attention is all I need. [5]

Challenges with RNNs

Long range dependencies

Gradient vanishing and explosion

Large # of training steps

Recurrence prevents parallel
computation

Transformer networks

Facilitate long range
dependencies

No gradient vanishing and
explosion

Fewer training steps

No recurrence, facilitate parallel
computation
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Transformer architecture

Transformer networks are composed by two
main stacks:

Encoder

Decoder

Both are composed of a sub-stacks of N
modules consisting mainly of Multi-Head
Attention and Feed Forward layers.
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Attention

Let’s start with the description of the attention-mechanism. It’s can be described by the
following equation:

Attention(Q,K ,V ) = Softmax

(
QKT

√
dk

)
V

Where Q, K, V are vectors representing query,
keys and values. dk is just a scaling factor to
prevent dot product growing large in
magnitude, pushing the softmax into regions
where it has small gradients.
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Query, keys and values

Query, keys and values are generated using self-attention from each of the encoder’s input
vectors.

Q = XWQ

K = XW K

V = XW V

Query, keys, and values have dimension dk .
All sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

dk = dmodel/Nheads
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Positional encoding

Since the Transformer contains no recurrence and no convolution, in order for the model to
make use of the order of the sequence, we must inject some information about the relative or
absolute position of the tokens.

−→pt (i) = f (t)(i) :=

{
sin (ωk · t) , if i = 2k
cos (ωk · t) , if i = 2k + 1

where ωk =
1

100002k/d
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Multi-head attention

A multi-head attention layer is composed of
many attention layers, each of which has its
own set of queries, keys and values obtained by
randomly initializing the weights matrices.

Then, after training, each set is used to project
the input embeddings into a different
representation subspace.

MultiHead(Q,K ,V ) = Concat(head1, ..., headh)WO

where:

head i = Attention
(
QWQ

i ,KW K
i ,VW V

i

)
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Decoding

Attention matrix Mask

Attention masked Attention Softmax

During the training phase, the input of the
decoder stack is the GT sequence shifted right
to add the start token.

< y1 > < y2 > < y3 > < y4 > < y5 >
SOS I am a student

Also we need to prevent leftward information
flow in the decoder to preserve the
auto-regressive property. We implement this
inside of scaled dot-product attention by
masking out (setting to −∞) all values in the
input of the softmax which correspond to
illegal connections.
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Decoding

In ”encoder-decoder attention” layers, the
queries Q come from the previous decoder
layer,and the memory keys K and values V
come from the encoder output.
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Inference

At inference time we do not have the GT sequence to provide as input to the decoder. So we
use the transformer in auto-regressive mode.

Encoder input (x) Decoder input (ŷt−1) Decoder Output (ŷt)
Je suis étudiant <SOS> I
Je suis étudiant <SOS>I I am
Je suis étudiant <SOS>I am I am a
Je suis étudiant <SOS>I am a I am a student
Je suis étudiant <SOS>I am a student I am a student <EOS>
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Greedy Search

When we predict a sentence, the last Softmax layer gives
us a probability distribution on the words in our
dictionary. If we always choose the one with the highest
probability, we are applying a greedy search.

A greedy search is not always the best choice, in fact if
we assume the probability distribution of a word
sequence as:

P (w1:T |W0) =
T∏
t=1

P (wt | w1:t−1,W0)

W0 being the initial context word sequence
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Greedy Search

We obtain:

P(”The”,”nice”,”woman”) = 0.2
P(”The”, ”dog”, ”has”) = 0.36

Beam search is one of the techniques to mitigate this
problem, reducing the risk of missing hidden high
probability word sequences by keeping the most likely
nbeams of hypotheses at each time step.
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Temporal Fusion Transformer

Real world time series datasets consist of many type of
input features:

Past observed inputs

Apriory known future inputs

Static features

TFT (Temporal fusion transformer) [3] is a novel
interpetrable forecasting deep neural network model
from Google AI.
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Architecture

TFT is based on sequential
processing using both:

Recurrent layers, to capture local
dynamics

Attention layers, to capture
long-term context
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GRN layer
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GRN layer

Gated Residual Network (GRN) is a building block of
TFT. The GRN takes in a primary input a and an
optional context vector c

GRNω(a, c) = LayerNorm (a + GLUω (η1))

η1 = W1,ωη2 + b1,ω

η2 = ELU (W2,ωa + W3,ωc + b2,ω)

where:

GLUω(γ) = σ (W4,ωγ + b4,ω)� (W5,ωγ + b5,ω)

ELU is the Exponential Linear Unit activation function.
σ(.) is the Sigmoid activation function.
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Variable Selection Network
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Variable Selection Network

Variable selection also allows TFT to remove any
unnecessary noisy inputs which could negatively impact
performance.

Being ξ
(j)
t the embedding of the j -th variable at time t

and Ξt =
[
ξ

(1)T

t , . . . , ξ
(mχ)T

t

]T
a vector of past inputs at

time t :

vχt = Softmax
(
GRNvχ (Ξt , cs)

)
cs is a context vector and vχt is a vector of variable
selection weights.
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Variable Selection Network

At each time step, an additional layer of non-linear

processing is employed by feeding each ξ
(j)
t through its

own GRN:
ξ̃

(j)
t = GRNξ̃(j)

(
ξ

(j)
t

)
Where each GRN share weights across all time steps t .
Finally input variables are weighted and combined:

ξ̃t =

mχ∑
j=1

v (j)
χt
ξ̃

(j)
t
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Sequence to sequence layer

The encoding and decoding part is
done using LSTM layers, feeding
ξt−k:t into the encoder and
ξt+1:t+τmax into the decoder.

At inference time a vector of zeros is
the input of the LSTM decoder.
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Interpretable multi-head attention

This layer is the same multi-head attention
proposed in Transformer architecture.

InterpretableMultiHead (Q,K ,V ) = H̃WH

But each head shares the same value weights
and the heads are aggregated with the average
instead of concatenation

H̃ = 1/H
∑mH

h=1 Attention
(
QW (h)

Q ,KW (h)
K ,VWV

)
WV are value weights shared across all heads.
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Quantile Regression

TFT generates prediction intervals on top of
point forecasts. This is achieved by the
simultaneous prediction of various percentiles
(e.g. 10th, 50th and 90th) at each time step.

The prediction intervals are learned by jointly
minimizing the quantile loss, summed across all
quantile outputs:

QL(y , ŷ ,q) = q(y − ŷ)+ + (1− q)(ŷ − y)+

Where (.)+ = max(0, .)
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Quantile Regression

L(Ω,W ) =

=
∑
yt∈Ω

∑
q∈Q

τmax∑
τ=1

QL (yt , ŷ(q, t − τ, τ), q)

Mτmax

Where Ω is the domain of training data
containing M samples, W represents the
weights of TFT and Q = {0.1, 0.5, 0.9} is the
set of output quantiles.
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N-Beats

N-Beats [4] is a block-based deep
neural network model for univariate
time series forecasting.

The main key principles of this
architecture are:

Being simple and generic

Not rely on time-series-specific
feature engineering or input
scaling
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Input

The model takes a time serie (x0, x1, ...xt) as input, called Lookback Period and predict
(xt+1, ..., xt+h) called Forecast Period.

h is the forecast window length.

S.Calderara, R. Di Carlo (UNIMORE) Sequence Modeling December 3, 2020 31 / 44



Basic block

The basic building block consists of a 4-layers FC (fully
connected) network with RELU nonlinearities.

It is then divided into two parts:

2-layers FC to predict the lookback period, so
basically it learns to reconstruct the input.

2-layers FC to predict the forecast period.
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Stack basic blocks

The basic blocks are organized into stacks using doubly
residual stacking principle. The lookback period
output is used to compute the residual and becomes the
input of the next basic block.

x` = x`−1 − x̂`−1

Where ` indicate the `-th block

The forecast period outputs from each block are
simply aggregated:

ŷ =
∑
`

ŷ`
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Combined stacks

Stacks are combined in a higher-level structure. Each
stack ouputs a residual vector (this vector represents
learnings not learnt by the stack) and a forecast vector.

The residual vector of each stack becomes the input of
the next one and the forecast vectors are aggregated in
the same way seen before.
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Explainability

The paper also propose a different configuration of the architecture, augmented with certain
inductive biases, to be interpretable.

Trend model A typical characteristic of trend is that most of the time it is a monotonic
function, or at least a slowly varying function. In order to mimic this behaviour we
constrain the last layer of the basic block:

ŷtrs,` = Tθfs,`

where θfs,` are polynomial coefficients predicted by a FC network of layer ` of stack s and
T = [1, t, ..., tp] is the matrix of powers of t.
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Explainability

The paper also propose a different configuration of the architecture, augmented with certain
inductive biases, to be interpretable.

Seasonality model Typical characteristic of seasonality is that it is a regular, cyclical,
recurring fluctuation. In order to mimic this behaviour we constrain the last layer of the
basic block:

ŷseas
s,` = Sθfs,`

where θfs,` are polynomial coefficients predicted by a FC network of layer ` of stack s and
S = [1, cos(2πt), . . . cos(2πbH/2− 1ct)), sin(2πt), . . . , sin(2πbH/2− 1ct))] is the matrix
of sinusoidal waveforms.
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Unsupervised Anomaly Detection on Time Series

An anomaly, or an outlier, is a data point
which is significantly different from the rest of
the data. [2]

Generally, the data in most applications is
created by one or more generating processes
that reflect the functionality of a system.
When the underlying generating process
behaves in an unusual way, it creates outliers.
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Unsupervised Anomaly Detection on Time Series

Classical approach:

Detecting an anomaly based on PCA has been widely used in practice because the only
information needed is a dataset describing the normal process operation. The most
common PCA-based monitoring statistic is Hotelling’s T 2:

T 2 =

n.comp∑
i=1

t2
i

s2
i

Where si is the i-th standard deviation of the ti score. For testing new data, when the
value of T exceeds a threshold value then is a fault.
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Unsupervised Anomaly Detection on Time Series

Classical approach:

Q-statistic denotes the change of the events that are not explained by the model of
principal components. It is a measure of the difference, or residual between a sample and
its projection into the model.

Qi = x̃i x̃T
i = xi

(
I− PPT

)
xTi

Where P is the matrix of principal components obtained using PCA. When a vector of
new data is available, the Q-statistic is calculated and compared with a threshold value, if
the confidence limit is violated then a fault is declared.
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Unsupervised Anomaly Detection on Time Series

Forecasting Based Approaches:

In this methodology, a prediction is
performed with a forecasting model (such
as a deep learning model) for the next
time period.

When a new forecasted value is out of
confidence interval, or exceeds a certain
threshold, the sample is flagged as
anomaly.
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Credits I

These slides heavily borrow from a number of awesome sources. I’m really grateful to all the
people who take the time to share their knowledge on this subject with others.

In particular:

Stanford CS224n: Natural Language Processing with Deep Learning
http://web.stanford.edu/class/cs224n/

Understanding 1D and 3D Convolution Neural Network
https://towardsdatascience.com/

understanding-1d-and-3d-convolution-neural-network-keras-9d8f76e29610

The illustrated Transformer
http://jalammar.github.io/illustrated-transformer/
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Credits II

The Positional Encoding
https:

//kazemnejad.com/blog/transformer_architecture_positional_encoding/

Hugging Face
https://huggingface.co/

N-BEATS https://kshavg.medium.com/

n-beats-neural-basis-expansion-analysis-for-interpretable-time-series-forecasting-91e94c830393
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