
(Deep) Entity Resolution

Problem definition

• Entity resolution: the process of identifying and merging records
judged to rappresent the same real-world object.

S1

S2

Deep learning

A class of machine learning algorithms, based on artificial neural network
architecture.

f(x) = Wx + b

Entity resolution process

1. Labelling entity subset

2. Learning rules / ML

3. Blocking

4. Applying ML rules to
match entity pairs

• PyTorch

• Record Linkage Toolkit

Distributed Representations of Tuples for Entity Resolution
https://arxiv.org/pdf/1710.00597.pdf (5 Aug 2018)

Model & framework

https://arxiv.org/pdf/1710.00597.pdf

Data sources
• Name:

DBLP-ACM

• Source:

Database Group Leipzig

https://dbs.uni-leipzig.de/en

• Domain:

Bibliographic

• Attributes:

Id, title, authors, venue, year

• Tuples

2.616 – 2.294

• Clean-Clean: each data source is duplicate free.

• Dirty-Clean: one of two sources contains duplicates.

• Dirty-Dirty: each source contains duplicates.

Types of entity resolutions

S1 S2

Entity representation

Id Authors Title Price Venue

1 Bill William
Gates

Follow your
dreams

20 International

Comparing two entities means comparing attributes’s
words between two entities.

An entity is a real world object described by a fixed number
of attributes.

Id Authors Title Price Venue

3 Bill William G. Follow dream 20 International

Word embeddings

The main idea is representing words as
vectors and use similarity functions to
compare words.

“Similarity” in this sense can be defined as:

• Euclidean distance (the actual distance
between points in N-D space)

• Cosine similarity (the angle between two
vectors in space).

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Cosine_similarity

Word embeddings

The simplest example of a word embedding scheme is a one-hot encoding.
In a one-hot encoding, or “1-of-N” encoding, the embedding space has the
same number of dimensions as the number of words in the vocabulary.

Word embeddings

We can create a more efficient 3-dimensional mapping for our example
vocabulary by manually choosing dimensions that make sense.

Word embeddings

The next step is to extend our simple 9-word example to the entire dictionary of
words, or at least to the most commonly used words.

Forming N-dimensional vectors that capture meaning in the same way that our
simple example does, where similar words have similar embeddings and
relationships between words are maintained.

As such, various algorithms have been developed, some recently, that can take
large bodies of text and create meaningful models. The most popular algorithms
are:

• Word2Vect (Google)

• GloVE (Stanford)

• FastText (Facebook)

Word embeddings

GloVe: Global Vectors for Word
Representation
(Jeffrey Pennington, Richard Socher, and
Christopher D. Manning. 2014)

https://nlp.stanford.edu/projects/glove/

Wikipedia 2014 + Gigaword 5

6B tokens

400K vocab

50-dimensional vectors

https://nlp.stanford.edu/projects/glove/

Distributed representation of tuples

For each attribute 𝐴𝑘 of tuple t:

• Tokenize 𝐴𝑘 into a set of words W

• Lookup for a token 𝑤1 ∈ W in Glove

• 𝑣𝑘(𝑡) : = average of vectors

Word GLOVE

Bill [0.4, 0.8, 0.9]

William [0.3, 0.9, 0.7]

Gates [0.5, 0.8, 0.8]

Authors Distributed rappres.

Bill William Gates [0.4, 0.83, 0.8]

Id Authors Title Price

1 Bill William
Gates

Follow your
dreams

20

Unknowns tokens & missing values

Glove contains special token <unk>

for unknowns words.
Word GLOVE

<unk> [-0.79, 0.86, 0.11, …]

<nan> [0.92, -0.31, 0.25, …]

Id Authors Title Price

23 Kauffman Illuminae
files

Distributional Similarity

For each pair of tuples (t, t’):

• Compute the distributed
rappresentation for t and t’

• Compute their distributional
similarity vector

Attributes Values Distributed rappres.

Id 1 [0.1, 0.1, 0.1]

Authors Bill William Gates [0.4, 0.83, 0.8]

Title Follow your dreams [0.53, 0.18, 0.67]

Attributes Cosine Similarity

Id -0.7

Authors 0.94

Title 0.95

Attributes Values Distributed rappres.

Id 5 [0.1, 0.1, 0.1]

Authors Bill William G. [0.43, 0.82, 0.7]

Title Follow dream [0.43, 0.28, 0.61]

Classifier

1. Input layer: similarity vector [1x5]

2. Hidden layer: fully connected[5x50]

3. Output Layer: binary vector[50x2]

4. Softmax()

• Learning rate: 1e-4

• Loss function: negative log likelihood

• Batch size: 20

Blocking
It is not possible to compare all possible
pairs of records!

• Group similar entities into blocks

• Execute comparisons only inside each block

1. Each profile is represented by one or

more blocking keys

2. All profiles having the same blocking

keys are placed in the same blocks

Blocking

Cartesian product

• Candidate pairs: 6.001.104

Sorted Neighbourhood algorithm

• Window size = 5

• Candidate pairs: 7163

• Train set: 5372

• Test set: 1791

N° samples

Train Validation

Training

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

0 1 2 3 4 5 6 7 8 9 10

Loss vs Accuracy

Loss Accuracy

Epoch: 10

Loss: 0.206

Accuracy: 0.954

Training

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10

True positive vs False positive

True positve False positive

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6 7 8 9 10

True negative vs False Negative

True Negative False Negative

True Positive: 381 89,22%
False Positive: 46 10,78%

True Negative: 1328 97,36%
False Negative 36 2,63%

Precision: 0.89
Recall: 0.91
F-score: 0,90

Tool
https://github.com/rs9000/DeepEntityMatching

https://github.com/rs9000/DeepEntityMatching

Improve the model

• Pre-process tokens (parse text, remove stop-words etc.)

• Use a RNN instead of the average between token vectors

• Use a more efficient blocking method

• Use a bigger word-embedding

