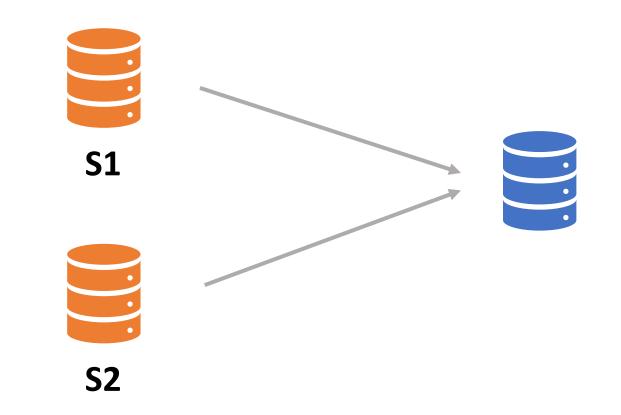
(Deep) Entity Resolution

Problem definition

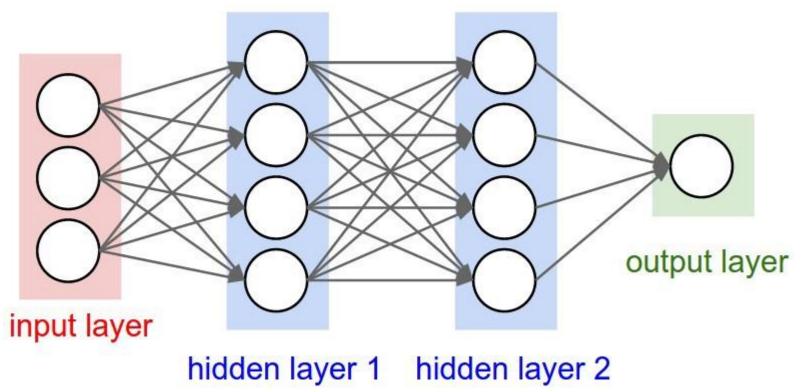
• Entity resolution: the process of identifying and merging records judged to rappresent the same real-world object.



Deep learning

A class of machine learning algorithms, based on artificial neural network architecture.

f(x) = Wx + b



Entity resolution process

- 1. Labelling entity subset
- 2. Learning rules / ML
- 3. Blocking
- 4. Applying ML rules to match entity pairs

Figure 1: A Typical ER Pipeline

Model & framework

Distributed Representations of Tuples for Entity Resolution <u>https://arxiv.org/pdf/1710.00597.pdf</u> (5 Aug 2018)

- PyTorch
- Record Linkage Toolkit

PYTÖRCH

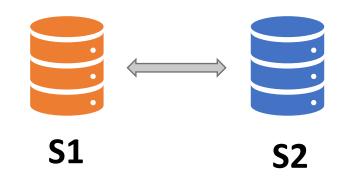
ment system	Gotu.
arributed multimedia databases	Isabel F. C.
Web, CORBA and databases	Athman Boug
with MIX	Chaitan Baru, An
rented database system	Alexander Brodsky,
ding mobility to PREDATOR	Phillippe Bonnet, Kyle
ler of the cubetree storage organization	Nick Roussopoulos, Yan
engine	Michael Bö
roach to business process management	N. R. Jennings, T. J. Norma
re for dynamic electronic markets	Benny Reich, Israel Ben-Sha
of RMP: a virtual electronic market place	Susanne Boll, Wolfgang Kla
ing intelligence through online analytical web usa	age m Alex G. Bü
erce: assessment of current practices and future d	irecti Martin Bichler, Arie Segev, J
ectronic catalogs	Sherif Danish
ce: enabling the network economy	Bart Meltzer, Robert Glushk
c marketplace on the Web	Asuman Dogac, Ilker Durus
dleware for large scale data delivery	Mehmet Altinel, Demet Ak
nerator for Web information extraction	Ling Liu, Wei Han, David
Internet	Reinhard Braumandl, A
'Ng Objects tracking	Ouri Wolfson, Prasad
ronous transactions	Lyman Do, Prabhu P
¬oft repository	Thomas Bergstre
[⊤] elecom Italia	Stefano M. Tr'
arehouse mechanisms	Matthias '
VitV	E. A
Semation organization	eL .

Data sources

- Name: DBLP-ACM
- Source: Database Group Leipzig https://dbs.uni-leipzig.de/en
- Domain: Bibliographic
- Attributes:
 Id, title, authors, venue, year
- Tuples
 2.616 2.294

Types of entity resolutions

- Clean-Clean: each data source is duplicate free.
- Dirty-Clean: one of two sources contains duplicates.
- Dirty-Dirty: each source contains duplicates.



Entity representation

An **entity** is a real world object described by a fixed number of attributes.

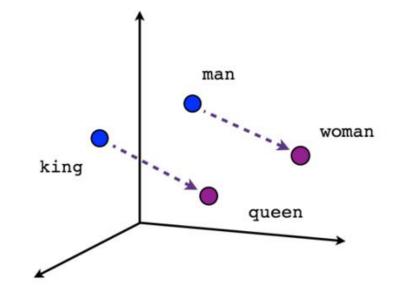
Id	Authors	Title	Price	Venue
1	Bill William Gates	Follow your dreams	20	International
ld	Authors	Title	Price	Venue
3	Bill William G.	Follow dream	20	International

Comparing two entities means comparing attributes's words between two entities.

The main idea is representing words as vectors and use similarity functions to compare words.

"Similarity" in this sense can be defined as:

- <u>Euclidean distance</u> (the actual distance between points in N-D space)
- C<u>osine similarity</u> (the angle between two vectors in space).



The simplest example of a word embedding scheme is a **one-hot encoding**. In a one-hot encoding, or "1-of-N" encoding, the embedding space has the same number of dimensions as the number of words in the vocabulary.

Vocabulary: Man, woman, boy, girl, prince, princess, queen, king, monarch

	1	2	3	4	5	6	7	8	9
mar	1	0	0	0	0	0	0	0	0
wom	an O	1	0	0	0	0	0	0	0
ьоу	0	0	1	0	0	0	0	0	0
girl	0	0	0	1	0	0	0	0	0
princ	.e 0	0	0	0	1	0	0	0	0
prince	ess 0	0	0	0	0	1	0	0	0
quee	en 0	0	0	0	0	0	1	0	0
king	0	0	0	0	0	0	0	1	0
mona	rch 0	0	0	0	0	0	0	0	1

Each word gets a 1x9 vector representation

We can create a more efficient 3-dimensional mapping for our example vocabulary by manually choosing dimensions that make sense.

Vocabulary: Man, woman, boy, girl, prince, princess, queen, king, monarch

	Femininity	Youth	Royalty
Man	0	0	0
Woman	1	0	0
Воу	0	1	0
Girl	1	1	0
Prince	0	1	1
Princess	1	1	1
Queen	1	0	1
King	0	0	1
Monarch	0.5	0.5	1

Each word gets a 1x3 vector

Similar words... similar vectors

The next step is to extend our simple 9-word example to the entire dictionary of words, or at least to the most commonly used words.

Forming N-dimensional vectors that capture meaning in the same way that our simple example does, where similar words have similar embeddings and relationships between words are maintained.

As such, various algorithms have been developed, some recently, that can take large bodies of text and create meaningful models. The most popular algorithms are:

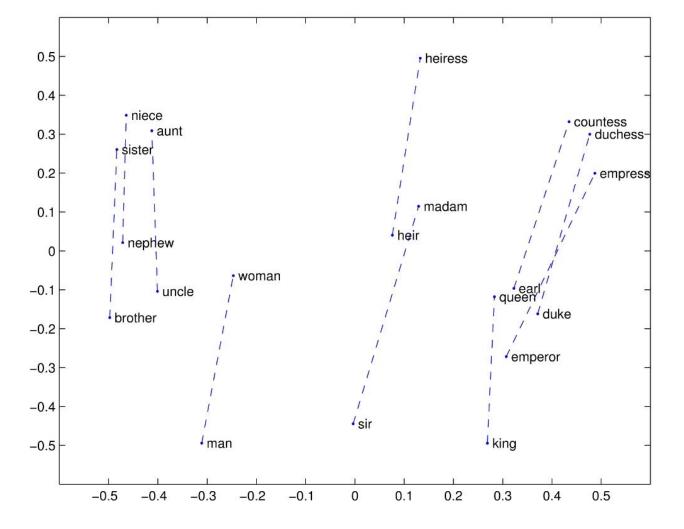
- Word2Vect (Google)
- GloVE (Stanford)
- FastText (Facebook)

GloVe: Global Vectors for Word Representation

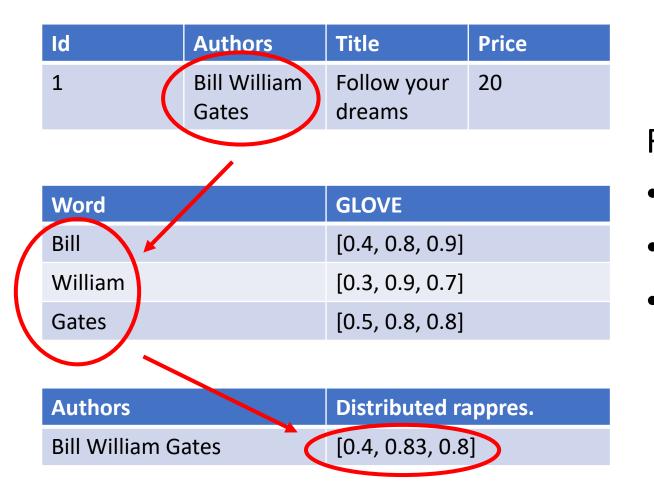
(Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014)

https://nlp.stanford.edu/projects/glove/

Wikipedia 2014 + Gigaword 5 6B tokens 400K vocab 50-dimensional vectors



Distributed representation of tuples

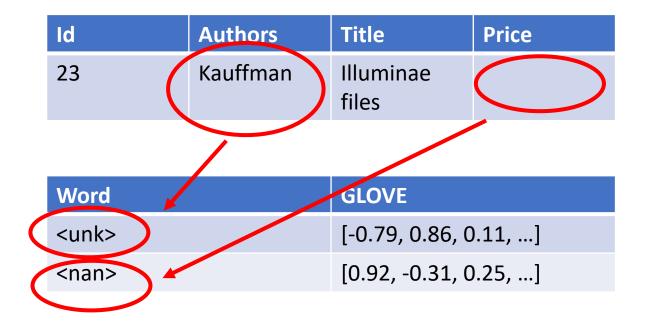


For each attribute A_k of tuple t:

- Tokenize A_k into a set of words W
- Lookup for a token $w_1 \in W$ in Glove

•
$$v_k(t)$$
 : = average of vectors

Unknowns tokens & missing values



Glove contains special token <unk> for unknowns words.

Distributional Similarity

Attributes	Values	Distributed rappres.
Id	1	[0.1, 0.1, 0.1]
Authors	Bill William Gates	[0.4, 0.83, 0.8]
Title	Follow your dreams	[0.53, 0.18, 0.67]

Attributes	Values	Distributed rappres.
Id	5	[0.1, 0.1, 0.1]
Authors	Bill William G.	[0.43, 0.82, 0.7]
Title	Follow dream	[0.43, 0.28, 0.61]

Attributes	Cosine Similarity
Id	-0.7
Authors	0.94
Title	0.95

For each pair of tuples (t, t'):

- Compute the distributed rappresentation for t and t'
- Compute their distributional similarity vector

Classifier

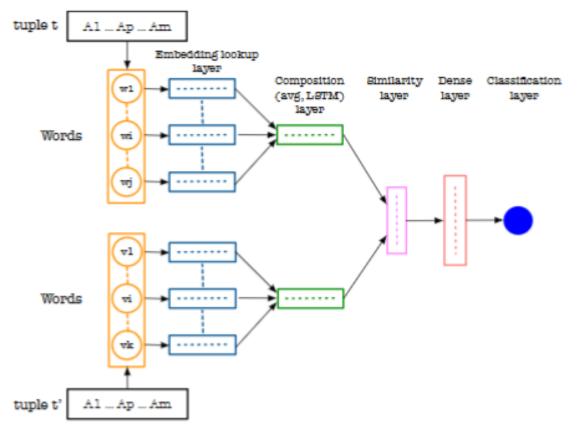


Figure 5: Deep Entity Resolution Framework

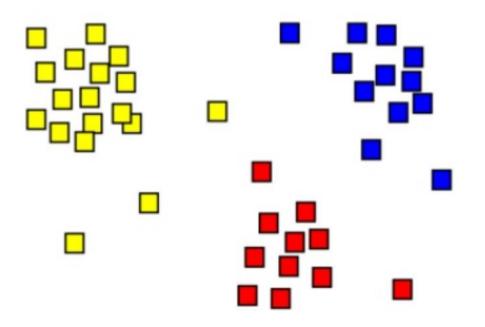
- 1. Input layer: similarity vector [1x5]
- 2. Hidden layer: fully connected[5x50]
- 3. Output Layer: binary vector[50x2]
- 4. Softmax()

- Learning rate: 1e-4
- Loss function: negative log likelihood
- Batch size: 20

Blocking

It is not possible to compare all possible pairs of records!

- Group similar entities into blocks
- Execute comparisons only inside each block
- 1. Each profile is represented by one or more **blocking keys**
- 2. All profiles having the **same** blocking keys are placed in the same blocks



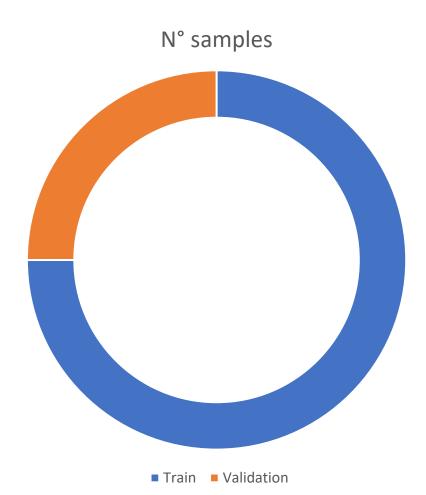
Blocking

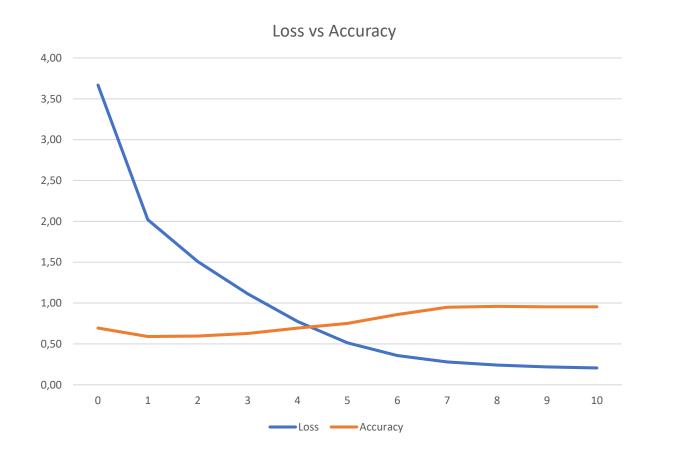
Cartesian product

• Candidate pairs: 6.001.104

Sorted Neighbourhood algorithm

- Window size = 5
- Candidate pairs: 7163
- Train set: 5372
- Test set: 1791

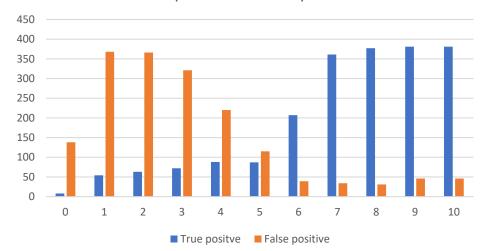




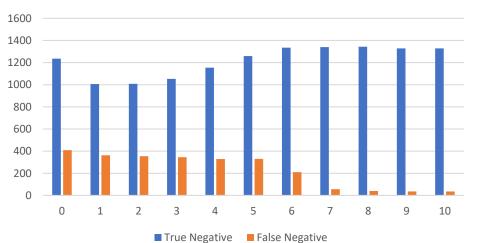
Epoch: 10 Loss: 0.206 Accuracy: 0.954

Training

True positive vs False positive







True Positive: 381	89,22%
False Positive: 46	10,78%

True Negative: 1328	97,36%
False Negative 36	2,63%

Precision: 0.89 Recall: 0.91 F-score: 0,90

Tool

https://github.com/rs9000/DeepEntityMatching

How to use

usage: train.py [-arg	s
arguments:	
source1	Source file 1
source2	Source file 2
separator	Char separator in CSV source files
n_attrs	Number of attributes in sources files
mapping	Partial ground truth mapping of sources files
blocking_size	Window size of the blocking method (Sorted Neighbourhood)
blocking_attr	Attributes of blocking
word_embed	Word embedding file
word_embed_size	Word embedding vector size
save_model	Save trained model
load_model	Load pre-trained model

Improve the model

- Pre-process tokens (parse text, remove stop-words etc.)
- Use a RNN instead of the average between token vectors
- Use a more efficient blocking method
- Use a bigger word-embedding

